Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ball Convergence for Steffensen-type Fourth-order Methods

We present a local convergence analysis for a family of Steffensen-type fourth-order methods in order to approximate a solution of a nonlinear equation. We use hypotheses up to the first derivative in contrast to earlier studies such as [1], [5]-[28] using hypotheses up to the fifth derivative. This way the applicability of these methods is extended under weaker hypotheses. Moreover the radius ...

متن کامل

Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative

We present a local convergence analysis of an eighth order three step method in order to approximate a locally unique solution of nonlinear equation in a Banach space setting. In an earlier study by Sharma and Arora (2015), the order of convergence was shown using Taylor series expansions and hypotheses up to the fourth order derivative or even higher of the function involved which restrict the...

متن کامل

New iterative methods with seventh-order convergence for solving nonlinear equations

In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.

متن کامل

Rate of convergence of higher order methods

Article history: Available online 30 July 2011

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2015

ISSN: 0377-0427

DOI: 10.1016/j.cam.2014.12.023